

## **Lipase DC\* FS\*\***

Diagnostic reagent for quantitative in vitro determination of lipase in serum or plasma on DiaSys respons<sup>®</sup>910

#### **Order Information**

Cat. No. 1 4321 99 10 921

4 twin containers for 120 tests each

#### Method

Enzymatic color test

A synthetically produced lipase substrate (1,2-o-dilauryl-rac-glycero-3-glutaric acid-(6-methylresorufin) ester) in a microemulsion is specifically split by lipase in the presence of colipase and bile acids. The combination of lipase and bile acids make this specific and reliable for pancreatic lipase without any reaction due to lipolytic enzymes or esterases. The reagent composition has been thoroughly optimized so there are no serum matrix effects. The generated methylresorufin-ester is spontaneously degraded to methylresorufin. The absorbance by this red dye is directly proportional to the lipase activity in the sample.

## **Principle**

Lipase catalyzes the reaction:

Glutaric acid-(6-methylresorufin)-ester

1.2-o-Dilauryl-rac-glycero-3-glutaric acid(6-methylresorufin) ester

Lipase / Colipase 1,2-o-Dilauryl-rac-glycerin + Glutaric acid-(6-methylresorufin)-ester spontaneous degradation

Glutaric acid + Methylresorufin

The increase in absorbance is measured photometrically.

#### Reagents

#### **Components and Concentrations**

| R1: | Goods buffer       | pH 8.0               | 50 mmol/L   |
|-----|--------------------|----------------------|-------------|
|     | Taurodesoxychola   | te                   | 4.3 mmol/L  |
|     | Desoxycholate      |                      | 8.0 mmol/L  |
|     | Calcium chloride   |                      | 15 mmol/L   |
|     | Colipase           |                      | 2.2 mg/L    |
|     | Detergent, preserv | /ative               | •           |
| R2: | Tartrate buffer    | pH 4.0               | 7.5 mmol/L  |
|     | Taurodesoxychola   | te                   | 17.2 mmol/L |
|     | Color substrate    |                      | 0.65 mmol/L |
|     | Coemulgator, stab  | ilizer, preservative |             |

#### Storage Instructions and Reagent Stability

The reagents are stable up to the end of the indicated month of expiry, if stored at 2 - 8 °C and contamination is avoided. Do not freeze the reagents and protect them from direct sunlight. DiaSys respons containers provide protection from light.

#### **Warnings and Precautions**

- 1. In very rare cases, samples of patients with gammopathy might give falsified results.
- 2. Please refer to the safety data sheets and take the necessary precautions for the use of laboratory reagents. For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findinas.

#### **Waste Management**

Please refer to local legal requirements.

## **Reagent Preparation**

The reagents are ready to use. The bottles are placed directly into the reagent rotor. Do not shake!

## **Specimen**

Serum or heparin plasma

Stability [1]:

20 - 25 °C 7 days at 7 days 4 - 8 °C at -20 °C 1 year at

Discard contaminated specimens. Freeze only once.

#### **Calibrators and Controls**

For calibration, DiaSys TruCal U calibrator is recommended. The assigned values of the calibrator have been made traceable to the molar extinctioncoefficient of an available measuring method. For internal quality control DiaSys TruLab N and P controls should be assayed. Each laboratory should establish corrective action in case of deviations in control recovery.

|          | Cat. No.         |    | Kit s | size |  |
|----------|------------------|----|-------|------|--|
| TruCal U | 5 9100 99 10 063 | 20 | Х     | 3 mL |  |
|          | 5 9100 99 10 064 | 6  | Х     | 3 mL |  |
| TruLab N | 5 9000 99 10 062 | 20 | Х     | 5 mL |  |
|          | 5 9000 99 10 061 | 6  | Х     | 5 mL |  |
| TruLab P | 5 9050 99 10 062 | 20 | Х     | 5 mL |  |
|          | 5 9050 99 10 061 | 6  | Х     | 5 mL |  |

#### **Performance Characteristics**

| Measuring range up to 300 U/L lipase                                      |  |  |
|---------------------------------------------------------------------------|--|--|
| (in case of higher activities re-measure samples after manual dilution or |  |  |
| use rerun function)                                                       |  |  |
| Limit of detection*** 4 U/L lipase                                        |  |  |
| On-board stability 6 weeks                                                |  |  |
| Calibration stability 7 days                                              |  |  |

| Interfering substance                                                    | Interferences < 10% | Lipase<br>[U/L] |
|--------------------------------------------------------------------------|---------------------|-----------------|
| Ascorbate                                                                | up to 30 mg/dL      | 127             |
| Hemoglobin                                                               | up to 550 mg/dL     | 54.8            |
|                                                                          | up to 550 mg/dL     | 115             |
| Bilirubin, conjugated                                                    | up to 60 mg/dL      | 54.7            |
|                                                                          | up to 60 mg/dL      | 132             |
| Bilirubin, unconjugated                                                  | up to 70 mg/dL      | 54.6            |
| up to 70 mg/dL 131                                                       |                     | 131             |
| Lipemia (triglycerides)                                                  | up to 2000 mg/dL    | 51.2            |
|                                                                          | up to 2000 mg/dL    | 89.4            |
| For further information on interfering substances refer to Young DS [2]. |                     |                 |

| Precision                    |          |          |          |
|------------------------------|----------|----------|----------|
| Within run (n=20)            | Sample 1 | Sample 2 | Sample 3 |
| Mean [U/L]                   | 46.3     | 60.5     | 96.5     |
| Coefficient of variation [%] | 2.17     | 1.99     | 2.23     |
| Between run (n=20)           | Sample 1 | Sample 2 | Sample 3 |
| Mean [U/L]                   | 43.0     | 49.1     | 94.2     |
| Coefficient of variation [%] | 4.56     | 4.97     | 2.20     |

| Method comparison (n=110)  |                                   |
|----------------------------|-----------------------------------|
| Test x                     | DiaSys Lipase DC FS (Hitachi 917) |
| Test y                     | DiaSys Lipase DC FS (respons®910) |
| Slope                      | 1.007                             |
| Intercept                  | 1.86 U/L                          |
| Coefficient of correlation | 0.998                             |

<sup>\*\*\*</sup> according to NCCLS document EP17-A, vol. 24, no. 34

#### Conversion factor

Lipase [U/L] x 0,0167= Lipase [µkat/L]

## Reference Range [3]

≤ 60 U/L  $\leq$  1.00 (µkat/L)

Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.



## Literature

- Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed.
- Darmstadt: GIT Verlag; 2001; p. 36-7.
  Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th. ed.
  Volume 1 and 2. Washington, DC: The American Association for
  Clinical Chemistry Press, 2000.
  Junge W, Abicht K, Goldman J. Evaluation of the colorimetric liquid
- assay for pancreatic lipase on Hitachi analyzers in 7 clinical centres in Europe. Clin Chem Lab Med 1999;37, Special suppl: 469.
- Lorentz K. Lipase. In: Thomas L, editor. Clinical laboratory diagnostics. 1<sup>st</sup> ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 95-7.
- Moss DW, Henderson AR. Digestive enzymes of pancreatic origin. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3<sup>rd</sup> ed. Philadelphia: W.B Saunders Company; 1999. p. 689-708.
- 6.
- Tietz N, Shuey DF. Lipase in serum the elusive enzyme: an overview. Clin Chem 1993; 39: 746-56.

  Lott J, Patel ST, Sawhney AK, Kazmierczak SC, Love JE. Assays of serum lipase: analytical and clinical considerations. Clin Chem 1986; 7.
- Leybold A, Junge W. Importance of colipase for the measurement of serum lipase activity. Adv Clin Enzymol 1986; 4: 60-7.
- Borgström B. The action of bile salts and other detergents on pancreatic lipase and the interaction with colipase. Biochimica et Biophysika Acta 1977; 488: 381-91.
  Gargouri Y, Julien R, Bois A, Verger R, Sarda L. Studies on the
- detergent inhibition of pancreatic lipase activity. J of Lipid Research 1983; 24: 1336-42.

## Manufacturer



DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Holzheim Germany



# **Lipase DC FS**

# Application for serum and plasma samples

This application was set up and evaluated by DiaSys. It is based on the standard equipment at that time and does not apply to any equipment modifications undertaken by unqualified personnel

| Identification                      |     |
|-------------------------------------|-----|
| This method is usable for analysis: | Yes |
| Name:                               | LPS |
| Shortcut:                           |     |
| Reagent barcode reference:          | 046 |
| Host reference:                     |     |

| Technic                                               |                |
|-------------------------------------------------------|----------------|
| Type:                                                 | Linear Kinetic |
| First reagent:[µL]                                    | 160            |
| Blanc correction                                      | Yes            |
| Second reagent:[µL]                                   | 40             |
| Blanc correction                                      | Yes            |
| Main wavelength:[nm]                                  | 570            |
| Secondary wavelength:[nm]                             | 700            |
| Polychromatic factor:                                 | 1.000          |
| 1 st reading time [min:sec]                           | 7:00           |
| Last reading time [min:sec]                           | 8:24           |
| Reaction way:                                         | Increasing     |
| Linear Kinetics Substrate deplation: absorbance limit | 0.6            |
| Linearity: Maximum deviation [%]                      | 100            |
| Fixed Time Kinetics                                   |                |
| Substrate deplation: absorbance limit                 |                |
| Endpoint                                              |                |
| Stability: largest remaining slope                    |                |
| Prozone Limit [%]                                     |                |

| 01                                   |      |
|--------------------------------------|------|
| Sample                               |      |
| Diluent                              | NaCl |
| Concentration technical limits-Lower | 4    |
| Concentration technical limits-Upper | 300  |
| SERUM                                |      |
| Normal volume [µL]                   | 4    |
| Normal dilution (factor)             | 3    |
| Below normal volume [µL]             | 8    |
| Below normal dilution (factor)       | 1    |
| Above normal volume [µL]             | 4    |
| Above normal dilution (factor)       | 6    |
| URIN                                 |      |
| Normal volume [µL]                   | 4    |
| Normal dilution (factor)             | 1    |
| Below normal volume [µL]             | 8    |
| Below normal dilution (factor)       | 1    |
| Above normal volume [µL]             | 4    |
| Above normal dilution (factor)       | 6    |
| PLASMA                               |      |
| Normal volume [µL]                   | 4    |
| Normal dilution (factor)             | 1    |
| Below normal volume [µL]             | 8    |
| Below normal dilution (factor)       | 1    |
| Above normal volume [µL]             | 4    |
| Above normal dilution (factor)       | 6    |
| CSF                                  |      |
| Normal volume [µL]                   | 4    |
| Normal dilution (factor)             | 1    |
| Below normal volume[ µL]             | 8    |
| Below normal dilution (factor)       | 1    |
| Above normal volume [µL]             | 4    |
| Above normal dilution (factor)       | 6    |
|                                      |      |

| Results                   |       |
|---------------------------|-------|
| Decimals                  | 1     |
| Units                     | U/L   |
| Correlation factor-Offset | 0.000 |
| Correlation factor-Slope  | 1.000 |

| Range  |         |
|--------|---------|
| Genre  | All     |
| Age    |         |
| SERUM  | >= <=60 |
| URINE  |         |
| PLASMA | >= <=60 |
| CSF    |         |
| Genre  |         |
| Age    |         |
| SERUM  |         |
| URINE  |         |
| PLASMA |         |
| CSF    |         |

| Contaminants  |           |
|---------------|-----------|
| Contaminant 1 | CHOL/TRIG |
| Wash with     | CLN A     |
| Cycle         | 1         |
| Volume [µL]   | 250       |
| Contaminant 2 | HDL/LDL   |
| Wash with     | CLN A     |
| Cycle         | 1         |
| Volume [µL]   | 250       |

| Calibrators details |                |               |
|---------------------|----------------|---------------|
| Calibrator list     |                | Concentration |
| Cal. 1              |                | 0             |
| Cal. 2              |                | *             |
| Cal. 3              |                | *             |
| Cal. 4              |                | *             |
| Cal. 5              |                | *             |
| Cal. 6              |                | *             |
|                     | Max delta abs. |               |
| Cal. 1              | 0.015          |               |
| Cal. 2              | 0.010          |               |
| Cal. 3              |                |               |
| Cal. 4              |                |               |
| Cal. 5              |                |               |
| Cal. 6              |                |               |
| Drift limit [%]     | 0.8            |               |
| Calculations        |                |               |
| Model               |                | X degree      |
| Degree              |                | 1             |

<sup>\*</sup> Enter calibrator value

Application respons<sup>®</sup>910 March 2013/6