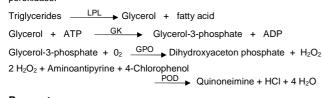


Triglycerides FS*

Diagnostic reagent for quantitative in vitro determination of triglycerides in serum or plasma on DiaSys respons[®]910


Order Information

Cat. No. 1 5710 99 10 923 4 containers for 200 tests each

Method

Colorimetric enzymatic test using glycerol-3-phosphate-oxidase (GPO)

Determination of triglycerides after enzymatic splitting with lipoprotein lipase. Indicator is quinoneimine which is generated from 4-aminoantipyrine and 4-chlorophenol by hydrogen peroxide under the catalytic action of

Reagent

Components and Concentrations

Good's buffer	pH 7.2	50 mmol/L
4-Chlorophenol		4 mmol/L
ATP		2 mmol/L
Mg ²⁺		15 mmol/L
Glycerokinase	(GK)	≥ 0.4 kU/L
Peroxidase	(POD)	≥ 2 kU/L
Lipoprotein lipase	(LPL)	≥ 2 kU/L
4-Aminoantipyrine		0.5 mmol/L
Glycerol-3-phosphate-oxidase	(GPO)	≥ 0.5 kU/L

Storage Instructions and Reagent Stability

Reagent is stable up to the end of the indicated month of expiry, if stored at 2 - 8 °C, protected from light and contamination is avoided. DiaSys respons containers provide protection from light. Do not freeze the reagent!

Warnings and Precautions

- The reagent contains sodium azide (0.95 g/L) as preservative. Do not 1. swallow! Avoid contact with skin and mucous membranes
- In very rare cases, samples of patients with gammopathy might give falsified results.
- Please refer to the safety data sheets and take the necessary precautions for the use of laboratory reagents. For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings.

Waste Management

Please refer to local legal requirements.

Reagent Preparation

The reagent is ready to use. The bottles are placed directly into the reagent rotor.

Specimen

Serum, heparin plasma or EDTA plasma

Stability [1]:

20 - 25 °C 2 days 4 - 8 °C -20 °C 7 days at at least one year at

Discard contaminated specimens. Freeze only once

Calibrators and Controls

For calibration, DiaSys TruCal U calibrator is recommended. . The assigned values of the calibrator have been made traceable to the reference method gas chromatography-isotope dilution mass spectrometry (GC-IDMS). For internal quality control DiaSys TruLab N and P or TruLab L controls should be assayed. Each laboratory should establish corrective actions in case of deviations in control recovery

doviduono in control 100	ovory.			
	Cat. No.		Kit	size
TruCal U	5 9100 99 10 063	20	Х	3 mL
	5 9100 99 10 064	6	Х	3 mL
TruLab N	5 9000 99 10 062	20	Х	5 mL
	5 9000 99 10 061	6	Х	5 mL
TruLab P	5 9050 99 10 062	20	Х	5 mL
	5 9050 99 10 061	6	Х	5 mL
TruLab L Level 1	5 9020 99 10 065	3	Х	3 mL
TruLab L Level 2	5 9030 99 10 065	3	Х	3 mL

Performance Characteristics

Measuring range up to 1000 mg/dL triglycerides (in case of higher concentrations re-measure samples after manual dilution or use rerun function).			
Limit of detection** 4 mg/dL triglycerides			
On-board stability 4 weeks			
Calibration stability			

Interfering substance	Interferences < 10%	Triglycerides [mg/dL]
Ascorbate	up to 9 mg/dL	225
Hemoglobin	up to 290 mg/dL	243
	up to 300 mg/dL	534
Bilirubin, conjugated	up to 20 mg/dL	168
up to 30 mg/dL 485		485
Bilirubin, unconjugated	unconjugated up to 10 mg/dL 163	
	up to 48 mg/dL	450
For further information on interfering substances refer to Young DS [2].		

Precision	_		
Within run (n=20)	Sample 1	Sample 2	Sample 3
Mean [mg/dL]	65.7	148	231
Coefficient of variation [%]	1.98	1.12	1.58
Between run (n=20)	Sample 1	Sample 2	Sample 3
Mean [mg/dL]	75.4	165	246
Coefficient of variation [%]	4.74	2.40	3.43

Method comparison (n=146)	
Test x	DiaSys Triglycerides FS (Hitachi 911)
Test y	DiaSys Triglycerides FS (respons®910)
Slope	0.986
Intercept	1.51 mg/dL
Coefficient of correlation	0.9997

^{**} according to NCCLS document EP17-A, vol. 24, no. 34

Conversion factor

Triglycerides [mg/dL] x 0.01126 = Triglycerides [mmol/L]

Reference Range [3]

Desirable: < 200 mg/dL (fasting) (2.3 mmol/L) Borderline high: 200 - 400 mg/dL (2.3 - 4.5 mmol/L) Elevated: > 400 mg/dL (4.5 mmol/L)

Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.

Clinical Interpretation [4]

Epidemiological studies have observed that a combination of plasma triglycerides > 180 mg/dL (> 2.0 mmol/L) and HDL-cholesterol < 40 mg/dL (1.0 mmol/L) predict a high risk of CHD. Borderline levels (> 200 mg/dL) should always be regarded in association with other risk factors for CHD.

Literature

- Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed.
- Darmstadt: GIT Verlag; 2001; p. 46-7.
 Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th. ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press, 2000.
- Cole TG, Klotzsch SG, McNamara J. Measurement of triglyceride concentration. In: Rifai N, Warnick GR, Dominiczak MH, eds. Handbook of lipoprotein testing. Washington: AACC Press, 1997.
- Recommendation of the Second Joint Task Force of European and other Societies on Coronary Prevention. Prevention of coronary heart
- disease in clinical practice. Eur Heart J 1998; 19: 1434-503. Rifai N, Bachorik PS, Albers JJ. Lipids, lipoproteins and apolipoproteins. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 809-61.

Manufacturer

DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Holzheim Germany

Reagent Information * fluid stable

Triglycerides FS

Application for serum and plasma samples

This application was set up and evaluated by DiaSys. It is based on the standard equipment at that time and does not apply to any equipment modifications undertaken by unqualified personnel

Identification	
This method is usable for analysis:	Yes
Name:	TRIG
Shortcut:	
Reagent barcode reference:	052
Host reference:	

Technic	
Type:	Endpoint
First reagent:[µL]	180
Blanc correction	No
Second reagent:[µL]	
Blanc correction	
Main wavelength:[nm]	508
Secondary wavelength:[nm]	700
Polychromatic factor:	1.000
1 st reading time [min:sec]	
Last reading time [min:sec]	10:00
Reaction way:	Increasing
Linear Kinetics	
Substrate deplation: absorbance limit	
Linearity: Maximum deviation [%]	
Fixed Time Kinetics	
Substrate deplation: absorbance limit	
Endpoint	
Stability: largest remaining slope	
Prozone Limit [%]	-

Sample	
Diluent	NaCl
Concentration technical limits-Lower	4
Concentration technical limits-Upper	1000
SERUM	
Normal volume [µL]	2
Normal dilution (factor)	1
Below normal volume [µL]	4
Below normal dilution (factor)	1
Above normal volume [µL]	2
Above normal dilution (factor)	6
URIN	
Normal volume [µL]	2
Normal dilution (factor)	1
Below normal volume [µL]	4
Below normal dilution (factor)	1
Above normal volume [µL]	2
Above normal dilution (factor)	6
PLASMA	
Normal volume [µL]	2
Normal dilution (factor)	1
Below normal volume [µL]	4
Below normal dilution (factor)	1
Above normal volume [µL]	2
Above normal dilution (factor)	6
CSF	
Normal volume [µL]	2
Normal dilution (factor)	1
Below normal volume[µL]	4
Below normal dilution (factor)	1
Above normal volume [µL]	2
Above normal dilution (factor)	6

Results	
Decimals	0
Units	mg/dL
Correlation factor-Offset	0.000
Correlation factor-Slope	1.000

D	
Range	
Genre	All
Age	
SERUM	>= <=200
URINE	
PLASMA	>= <=200
CSF	
Genre	
Age	
SERUM	
URINE	
PLASMA	
CSF	

Contaminants	
Contaminant 1	
Wash with	
Cycle	
Volume [µL]	
Contaminant 2	
Wash with	
Cycle	
Volume [µL]	

Calibrators details		
Calibrator list		Concentration
Cal. 1		0
Cal. 2		*
Cal. 3		*
Cal. 4		*
Cal. 5		*
Cal. 6		*
	Max delta abs.	
Cal. 1	0.0100	
Cal. 2	0.0200	
Cal. 3		
Cal. 4		
Cal. 5		
Cal. 6		
Drift limit [%]	0.8	
Calculations		
Model		X degree
Degree		1

^{*} Enter calibrator value

Application respons[®]910 March 2013/7